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Abstract— Multitask learning uses external knowledge to
improve internal clustering and single-task learning. Existing
multitask learning algorithms mostly use shallow-level correlation
to aid judgment, and the boundary factors on high-dimensional
datasets often lead algorithms to poor performance. The initial
parameters of these algorithms cause the border samples to fall
into a local optimal solution. In this study, a multitask-guided
deep clustering (DC) with boundary adaptation (MTDC-BA)
based on a convolutional neural network autoencoder (CNN-
AE) is proposed. In the first stage, dubbed multitask pretraining
(M-train), we construct an autoencoder (AE) named CNN-AE
using the DenseNet-like structure, which performs deep feature
extraction and stores captured multitask knowledge into model
parameters. In the second phase, the parameters of the M-train
are shared for CNN-AE, and clustering results are obtained
by deep features, which is termed as single-task fitting (S-fit).
To eliminate the boundary effect, we use data augmentation
and improved self-paced learning to construct the boundary
adaptation. We integrate boundary adaptors into the M-train
and S-fit stages appropriately. The interpretability of MTDC-BA
is accomplished by data transformation. The model relies on the
principle that features become important as the reconfiguration
loss decreases. Experiments on a series of typical datasets
confirm the performance of the proposed MTDC-BA. Compared
with other traditional clustering methods, including single-task
DC algorithms and the latest multitask clustering algorithms,
our MTDC-BA achieves better clustering performance with
higher computational efficiency. Deep features clustering results
demonstrate the stability of MTDC-BA by visualization and
convergence verification. Through the visualization experiment,
we explain and analyze the whole model data input and the
middle characteristic layer. Further understanding of the prin-
ciple of MTDC-BA. Through additional experiments, we know
that the proposed MTDC-BA is efficient in the use of multitask
knowledge. Finally, we carry out sensitivity experiments on the
hyper-parameters to verify their optimal performance.
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NOMENCLATURE

m Number of multitask datasets.
X = {X1, X2, . . . , Xm

} Datasets of multitask.
X j

= {x j
i } ∈ Rd×N j

j th dataset contains N j samples.
N j Number of samples contained in

the j th dataset.
Y Multitask dataset used for the

M-train.
Z j

= {z j
i } ∈ Rr×N j

Deep feature set extracted from the
j th dataset.

r Dimension of the deep features.
d Dimension of the single data

sample.
S j

= {s j
i } ∈ RN j

Cluster assignment for the j th
dataset.

k Number of clustering.
C = {c1, c2, . . . , ck} Clustering centers of all clusters.
hu(·) Decoder mapping.
fw(·) Encoder mapping.
L M

c and L M
r Clustering loss and net loss of

M-train.
L S

c and L S
r Clustering loss and net loss of

S-fit.
L S Final loss of S-fit.
α = γ (·) Data enhancement extension

mapping.

I. INTRODUCTION

CLUTERING is an active topic in the field of machine
learning, which has been widely used in pattern recogni-

tion, computer vision, and data mining. Traditional clustering
methods, such as K -means (KM) [1], Gaussian mixture
model [2], and hierarchical clustering [3], usually group
samples by the similarity implicitly contained in the data.
Other methods, e.g., spectral clustering [4] and kernel KM [5].
In essence, these methods conduct shallow learning via
extracting shallow features from samples, which fails to fully
explore the deep correlation between different samples and
tasks.

In recent years, clustering methods based on deep-learning
techniques [6] have made remarkable progress due to the
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powerful representational capacity of deep neural networks
(DNNs) for large-scale data. DNNs are used to transform
the data into more clustering-friendly representations with
the guidance of clustering objectives. Therefore, deep-learning
models encode the original data in deep feature spaces.
Moreover, DNNs can also play a crucial role in dimension
reduction and alleviate the problem of the “dimension curse.”
Both performance and efficiency of clustering methods have
been greatly facilitated in the context of deep clustering (DC).

However, both traditional methods and DC methods are
rarely considered to promote clustering on the target task.
In general, the same data keeps implicit heterogeneity for
different tasks, while different data also maintain implicit
homogeneity for the same tasks. In multitask learning [7], the
common knowledge shared by multiple tasks is extracted and
transferred in a general manner.

Most methods do not consider the influence of boundary
samples on class centers. In unsupervised learning, the ini-
tial parameters of DNNs often determine the final result of
boundary samples, which makes it impossible to effectively
learn boundary samples. Actually, ignoring boundary effects
also means excluding data enhancement, which will lead to
weak generalization of the model. This indicates that the robust
features for clustering cannot be learned. We put forward a
way of thinking to solve this problem and incorporate it into
our proposed approach.

In this article, to explore the interpretability of the DC
method, we propose a multitask-guided DC with boundary
adaptation (MTDC-BA) algorithm, which consists of two
stages: multitask pretraining (M-train) and single-task fitting
(S-fit). In the M-train phase, a convolutional neural network
autoencoder (CNN-AE) was built that uses DenseNet as the
encoder and five deconvolution layers as the decoder. We use
CNN-AE to extract fuzzy knowledge from all task data.
In the subsequent S-fit phase, the extracted fuzzy knowledge
will help us improve the single-task clustering results. It is
worth mentioning that in the overall framework, we use
self-paced and data argumentation techniques to construct
the boundary adapters to eliminate the negative effects of
boundary effects and improve the clustering efficiency. Exten-
sive experiments on several representative datasets illustrate
the advantages of our method over other state-of-the-art
works. The main contributions of this article are highlighted
below.

1) Multitask learning is integrated into DC, which makes
them benefit each other to some extent. The powerful
representation capacity of deep features helps the model
adequately excavate the deep association between mul-
tiple tasks. On the other hand, deep features of the data
can be effectively acquired with the aid of the shared
knowledge among multiple tasks. The performance of
the target clustering can be significantly improved by
the shared knowledge extracted from multiple tasks by
our CNN-AE.

2) A DenseNet-like CNN is built to extract deep features of
samples. Improved by data augmentation and boundary
adaptation, the clustering effect of depth features is more
obvious. The visualization experiment of the feature

layer in the model verifies the validity of the method
in the interpretability of the method.

3) For intractable ambiguous samples, we propose an
improved strategy of boundary adaptation based on
data augmentation and self-paced learning. The strategy
is designed to eliminate the uncertainty of ambiguous
samples and promote the clustering performance of
the proposed method on the boundaries of deep fea-
tures. The working principle of boundary adaptation is
explained visually by the feature layer.

4) Extensive experiments are implemented to verify the
promotion of multitask learning on the target cluster-
ing and the effectiveness of boundary adaption. Also,
comparative experiments are presented to illustrate the
superiority of the proposed method over other state-of-
the-art clustering methods.

The rest of this article is organized as follows. Section II
presents a review of related work. Section III introduces the
proposed MTDC-BA algorithm. In Section IV, we conducted
extensive experiments on the constructed learning model.
It includes the interpretation of the meaning of the network
framework hierarchy. In Section V, we present several variants
by changing the structure of the network. Section V presents
the conclusion and prospects for future work.

II. RELATED WORK

The proposed framework for multitask clustering integrates
deep feature extraction, self-paced learning, and data augmen-
tation. Therefore, in this section, we only review and discuss
the existing work related to this article.

A. Multitask Clustering

Multitask clustering is a type of unsupervised multitask
learning, which improves the clustering performance of a
single task by considering the correlation between tasks.
Three knowledge transfer methods are usually used to reuse
knowledge, which are feature transfer, instance transfer, and
model parameter transfer.

Feature transfer looks for an expression method that can
represent the features of multiple tasks, but will reduce the
distribution difference of the tasks. At present, more popular
learning methods are finding a new subspace for tasks with
the same centroid, and the subspace contains all the data of all
tasks. For example, learning the shared subspace for multitask
clustering (LSSMTC) [8] finds a new kernel space for all
tasks with similar distributions. The transfer learning-based
maximum entropy clustering (TL_MEC) [9] learns a feature
association matrix for each task such as multitask information
bottleneck co-clustering (MIBC) [10].

Instance transfer improves the clustering process of the
main task by transferring the instance samples of the auxiliary
task. Multitask information bottleneck (MTIB) [11] quantifies
the correlation of different task distributions by designing a
minimum loss function, multihop balanced clustering (MBC)
[12] uses the exchange of cluster centroids. Learning the
correlation between tasks, self-adapted multitask clustering
(SAMTC) [13] constructs a common subtask for multiple tasks
with shared cluster labels, and learns the correlation through
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the correlation of subtasks knowledge. manifold regularized
coding multitask clustering (MRCMTC) [13] is to alternately
learn a low-dimensional space, it satisfies the data in the space
and completely replaces the data in the source task.

The parameter transfer is also often used in deep-learning
models. Multitask embedding learning (MTEL) [14] con-
structed an adjacency matrix of two task data, and achieved
the purpose of clustering the target node by predicting the
interval of each pair of nodes in the adjacency matrix. The
regularization model of two tasks in the algorithm shares
parameters. The advantage of the parameter is that it performs
well in attribute graphs, but the disadvantage is also obvious,
and it can only be used for knowledge transfer learning
between two tasks. We solved this issue with an end-to-end
approach.

B. Deep Clustering

DC is a clustering algorithm that adopts a DNN to learn
cluster-oriented features. Depending on the type of network,
we are able to classify DC algorithms into four types: autoen-
coder (AE)-based, variational AE (VAE)-based, generative
adversarial network (GAN)-based, and convolutional neural
networks (CNNs)-based [15]. AE-based models are currently
the most popular, with associated structures used and showing
good performance in a large number of experiments [16], [17],
[18], [19], [20]. In the past five years, Guo et al. [21] proposed
to ignore the network loss and only use the clustering loss to
replace the loss of the entire model. Not only that, the study
also incorporated self-expression features into the middle layer
of the fully connected AE.

The advantage of VAE-based can predefine a distribution
that conforms to the cluster structure. Shahin et al. [22] pro-
posed the predefined maximum and lower bound distribution,
and a Gaussian mixture model with higher performance is
obtained. Shu et al. [23] performed prefitting on the density,
and its experiment results are more in line with the distribution
curve of the real clustering results. However, they all have a
major defect, the complexity is too high, especially in image
data, and the complexity shows a geometric growth trend.

GAN- and VAE-based methods are much the same.
Wang et al. [24] learned the common low-dimensional fea-
tures, which can make up the missing view data and capture
a better structure for clustering. Liu et al. [25] beside two
typical parts in GAN, i.e., generator (G-Net) and discriminator
(D-Net). There is a third party named TaskNet (T-Net) in
the task-oriented GAN. However, GAN-based also has the
disadvantage of hard convergence and model collapse, just
like GANs [26].

The last one is called CNN-based approaches, which only
appeared in recent years and belongs to the latest develop-
ment research of DC. Reference [27] is an early CNN-based
research, a novel machine-learning model combining CNN
with KM clustering is proposed. In [28], CNN-long–short-
term memory (CNN-LSTM) is constructed. What’s more,
Yu et al. [29] showed that CNN-based has better data pro-
cessing and feature extraction ability on large-scale cluster
data. We improve the CNN-based by introducing the AE-based

model, which retains the excellent features of the CNN-based
and shows strong clustering robust feature learning ability.

C. Self-Paced Learning and Data Augmentation

Many existing studies have ignored the influence of bound-
ary factors, Bai et al. [30] showed that samples far away from
the cluster center have a negative effect on the training of the
whole DNN, we solved this problem with self-paced learning
and data enhancement.

Self-paced learning simulates the law of human learn-
ing and follows the basic logic from simple to difficult.
Zheng et al. [31] confirmed that adding self-paced learning
to unsupervised learning can enhance the generalization of
the overall model. Yu et al. [32] applied self-paced learning
to KM clustering. Compared with the scheme without self-
paced learning, the excellent results confirm the feasibility of
self-paced clustering learning.

Data augmentation is an effective way to expand samples.
We can expand data by rotation, offset, and clipping to prevent
model overfitting. The importance of data augmentation is
clearly demonstrated and verified in [33], [34], and [35].
However, data argumentation is rarely used because of its
instability.

MTDC-BA combines self-paced learning and data argumen-
tation to eliminate the negative influence of boundary factors
and enhance the stability of the whole model. The experiment
results on various datasets verify the validity of our solution.

III. MULTITASK-GUIDED DC WITH
BOUNDARY ADAPTATION

In this section, we introduce the proposed MTDC-BA,
which explores the relevance of multiple tasks and cluster
assignments for each task. In Section III-A, we present
the overall framework of MTDC-BA, a two-phase popular
structure of M-train and S-fit. In Section III-B, we describe
the detailed processes and principles of the two phases,
highlighting their workflow, and the relationship between the
two phases. In Section III-C, after a two-stage process is
established, we improve learning efficiency by eliminating the
negative effects of boundary factors through data enhancement
and self-paced learning. Section III-D presents a summary of
our algorithm and tries to analyze interpretability, including
the analysis of time complexity and real-time analysis.

A. Network Architecture

In this section, we introduce the network architecture of the
proposed MTDC-BA. We need to summarize the definitions
and notations. The most frequently used symbols in this article
are shown in Nomenclature.

Definition 1 (MTDC-BA): Suppose there are m tasks for
clustering, each of which corresponds to a dataset X j , j =

1, 2, . . . , m. These datasets contain common samples Y =

{xi }
n
i=1 for different tasks. X j

= {x j
i } ∈ Rd×N j

is the j th
dataset, where x j

i is the i th sample in the j th dataset, and N j

is the amount of data contained in the dataset, and d is the
dimension of a single data sample. MTDC-BA is designed to
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take advantage of the powerful abstractions of deep learning
to extract important features that can represent metadata Z j

=

{z j
i } ∈ Rr×N j

, where z j
i is deep features of x j

i , and r is
the dimension of z j

i . MTDC-BA utilizes the deep features to
improve the final cluster allocation S j

= {s j
i } ∈ RN j

, s j
i ∈

{1, 2, . . . , n}, where n is the number of cluster classes given
in advance.

As shown in Fig. 1, MTDC-BA consists of two parts:
the M-train and the S-fit. The M-train stage is responsible
for capturing and maintaining the shared knowledge and
interrelationship between these tasks. The S-fit phase is built
to draw lessons from the shared knowledge and improve the
clustering performance of the target task.

M-train and S-fit adopt the parameter transfers which is one
of the multitask knowledge transfer modes to learn the whole
multitask. Both M-train and S-fit depend on a CNN-AE. CNN-
AE inherits DenseNet’s properties due to the construction
of dense connections, which greatly improves the ability of
feature extraction and knowledge capture. The decoder uses
five levels of deconvolution and two levels of full connection,
like [36], and the decoder has excellent learning capabilities.
In addition, the boundary adaptation produces the effect in
M-train and S-fit and eliminates the boundary influence.
Specifically, the boundary adaptation removes the boundary
samples during the iteration of M-train and S-fit so that they
are not involved in knowledge capture. The samples near the
cluster center have a higher influence. Then, the credibility has
been greatly enhanced. Next, to explore the learning process
in more detail, we begin by showing how multitask knowledge
is captured and used by M-train and S-fit.

B. Two-Phase Learning for Multitask Relationship

In the scenario of multitask clustering, the common method
to capture multitask knowledge is to find the same distribution
of different tasks. Specifically, the different tasks Ti and T j or
their subsets are associated. In detail, different subsets have
the same class label, and these subsets follow a similar density
distribution. We need to find these subsets before moving into
the M-train phase and leverage them to improve performance.

In order to facilitate the search, we first transform the data
of all tasks into a uniform representation, so that the data
has the same feature dimension. We then designed a D-Net
that distinguishes data samples with multiple tags. The D-Net
works as follows:

Y = ∪
T
k=1 ∩

m
j=1 g(X j , tk) (1)

where t represents the total number of all datasets and all
labels, tk represents the kth label, g(X j , tk) means to look for
a sample with the tk tag in the dataset X j , and ∪

T
k=1 ∩

m
j=1

g(X j , tk) represents the intersection of samples containing tk
tags in m datasets.

Then, we use the resulting dataset Y correlated to multiple
tasks for shared knowledge learning. During the M-train stage,
we will get low-dimensional features through CNN-AE, which
is trained by minimizing the L M

r loss

L M
r =

1
n

n∑
i=1

||xi − hu( fw(xi ))||
2 (2)

where L M
r represents the reconstruction loss (M stands for

M-train and r indicates the reconstruction loss), and xi is
the i th sample in Y . fw(∗) corresponds to the function
of the encoder and hu(∗) is the decoder, where u and w

is the network parameters for these two structures. n is the
total number of samples in Y . The target is to obtain the
intermediate codes of the CNN-AE

Z = { fw(xi )}
n
i=1 = {zi }

n
i=1 ∈ Rr×n (3)

where Z is the result of dimension reduction of CNN-AE and
r is the dimension of zi . During the M-train phase, CNN-AE
is trained by minimizing the following objectives:

min
1
n

n∑
i=1

||hu(zi ) − xi ||
2. (4)

The goal of the M-train stage is obtaining suitable parame-
ters u and w for the S-fit phage. Therefore, it is critical to judge
when the training of CNN-AE should be ended. We performed
a cursory review of the intermediate code zi , depending in part
on our clustering loss L M

c

L M
c =

1
n

n∑
i=1

||xi − ci ||
2 (5)

where ci is the cluster center corresponding to the sample xi .
Next, the clustering assignment S represents the cluster center
to which the i th sample belongs. The S = {si } ∈ Rn can
obtained by clustering Z

C = π(Z) (6)

where π(Z) means to cluster Z using KM or other basic
clustering methods such as spectral clustering or hierarchical
clustering. We set up L M

c as the loss to help determine when
the M-train phase has been completed. We take the derivative
of L M

c with respect to the code zi , i.e., ∂L M
c /∂zi , as the

criteria. When ∂L M
c /∂zi < 0, then the optimization of L M

c
starts to change the direction of searching. If the M-train phase
continues, the network parameters u and w might change to
be unsuitable for knowledge sharing of multitask clustering,
then the M-train phase should be terminated.

Our MTDC-BA is a streamlined structure, and the end of the
M-train is the beginning of the S-fit. The multitask knowledge
captured in the M-train phase is stored in the model parameters
u and w. We use u and w to initialize CNN-AE in the S-fit
phase. The initial activation process is shown in Fig. 2.

The S-fit phase is designed for single-task clustering. During
this stage, the overall loss can be written as

L S
= L S

c + L S
r (7)

where the L S
r represents the reconstruction loss resulting from

the S-fit phase for single-task data fitting, the L S
c represents

the loss to single-task data clustering during the S-fit phase,
and the principle of L S

r and L S
c is the same as (2) and (5).

We use the L S
c in the (7) as the overall loss during the S-fit

phase, which is the gain

L S
=

1
n j

n j∑
i

∥∥x j
i − s j

i

∥∥2 (8)
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Fig. 1. Overall architecture of MDTC-BA. The multitask dataset completes the initial M-train phase through CNN-AE, which inherits the CNN-AE model
parameters from the M-train in the S-fit and gets the results from clustering the generated deep features. It is worth noting that the two steps use different
datasets, the first of which contains multitasking data. Multitask knowledge is extracted into the parameter θ . In S-fit, the target single task uses the extracted
knowledge to obtain high-performance results.

Fig. 2. S-fit initialized with the M-train parameters, and the single-task data obtained through S-fit to calculate deep features, then the cluster division is
obtained. Note that the parameters obtained by training in the M-train phase are inherited in the S-fit phase, and the input becomes the target task data in the
S-fit phase.

where x j
i is the i th sample of the j th task, s j

i is the cluster
center of the cluster partition about x j

i , and n j is the total
number of samples in j th task. The s j

i is obtained by clustering
the low-dimensional feature set Z j

= {z j
1, z j

2, . . . , z j
n j } after

each iteration.
During the S-fit phase, the entire clustering process can

be understood as Fig. 2. We put the single-task dataset that
currently needs to complete clustering into the CNN-AE first.
Depending on the resulting middle deep feature Z , we per-
formed the entire clustering, and the training of CNN-AE
depends on the value of the loss that we define. When L S

tends to be stable, we can determine that the distribution of
clusters tends to be completed. The CNN-AE training process
for the entire S-fit phase can be expressed as

min
u,w

1
n

n∑
i=1

∥∥hu
(

fw
(
x j

i

))
− x j

i

∥∥2

s.t. L S
=

1
n j

n j∑
i

∥∥x j
i − s j

i

∥∥2. (9)

However, the whole model does not eliminate the influence
of the boundary factor, so it often falls into the local optimal
trap during the training process.

C. Boundary Adaption

The boundary samples and the initial boundary parameters
of the model often lead to the failure of the whole model.
In MTDC-BA, the boundary factor is eliminated by the
boundary adaption. The boundary adaption is conducted by
self-paced learning and data augmentation, which is shown in
Fig. 3. Because the data augmentation may bring the problem
of data imbalance, we need to delimit the offset range when we
carry on the data augmentation. The data imbalance problem is
solved when we perform only nonoverlapping angular rotation.
But at this time the data expansion is not sufficient, we rely
on self-paced learning to further mine knowledge.

After an iteration loop, CNN-AE will incorporate all the
samples into the training, including the boundary factor, which
obviously can not be avoided. We use the method of discarding
the boundary samples so that the samples learned after each
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Fig. 3. (a) Boundary adaptation improves the clustering of ambiguous samples from two aspects. (b) Self-paced learning fine-tunes ambiguous samples so
that they move away from cluster boundaries, which is equivalent to optimizing the boundaries in a fine-tuning manner. (c) Data augmentation smoothes the
manifold where the training samples reside, making the samples easier to aggregate in the high-dimensional space.

iteration are reliable samples near the center of the class.
In order from simple to difficult, we learn the samples near the
center of the cluster first, then learn the samples far from the
center, which means the boundary samples. In general, giving
the training sample set D = {(x1, y1), (x2, y2), . . . , (xn, yn)}

and the learning model f with parameter w, the goal of
traditional self-paced learning is

min
w

n∑
i=1

vi L( fw(xi ), yi ) + g(λ, vi )

s.t. vi ∈ [0, 1] (10)

where v = [v1, v2, . . . , vn]
T is the weight of the sample and

g(λ, vi ) is called the self-paced regularization term. λ is the
valve to determine the degree of learning difficulty.

We use (10) instead of (4) to obtain a loss function in
conjunction with self-paced learning

Lr =
1
n

n∑
i=1

vi || fw(xi ) − yi ||
2
− λvi

s.t. vi ∈ [0, 1]. (11)

Traditional self-paced learning consists of two hyper-
parameters: λ controls the learning speed and another one
controls the step size, but it is difficult to choose the appro-
priate step size because our loss gradually decreases during
training. Based on the above analysis, we optimize the steps
of self-paced learning and propose a new learning speed λ

λ = µ(L t ) +
t
T

σ(L t ) (12)

where L t is the total loss during training, T is the maximum
number of iterations trained, t is the number of current
iterations, and µ(∗) and σ(∗) are the mean and variance of
the loss. At this point according to (12), the loss value L t is
deterministic during the training because of the deterministic
model, while T and t are deterministic according to the model,
λ becomes a value independent of any hyper-parameters. vi

can be obtained in closed form

vi =

{
1, if ||xi − ci ||

2 < λ

0, otherwise.
(13)

Taking the defined self-paced learning rate into the overall
model, we can infer the goals of the M-train phase and the
S-fit phase

min
w,u

1
n

n∑
i=1

vi ||hu(zi ) − xi ||−λvi

s.t. vi ∈ [0, 1] (14)

and

min
L S

1
n

n∑
i=1

vi
∥∥hu

(
fw

(
x j

i

))
− x j

i

∥∥2
− λvi (15)

where come from (12).
In order to improve the learning efficiency of boundary

samples, we use data augmentation and define a transformation
equation

α = γ(x) (16)

where γ(∗) stands for a random combination of rotation, affine
transformation, clipping, flipping, and other operations.

By introducing data augmentation into the M-train and
the S-fit, we can get the goal of two phases, which can be
expressed as

min
w,u

1
n

n∑
i=1

vi ||hu( fw(αi )) − αi ||−λvi

s.t. vi ∈ [0, 1] (17)

and

min
L S

1
n

n∑
i=1

vi
∥∥hu

(
fw

(
α

j
i

))
− α

j
i

∥∥2
− λvi . (18)

Explain boundary adaptation works in depth, with
self-paced learning and data augmentation, we deflect the
edge samples in the original space so that the edge samples
tend to the correct class center. After each iteration, a new
batch of edge samples is judged by self-paced learning. The
boundary adaptation constructed by self-paced learning and
data argumentation can effectively enhance the learning of
boundary factors.
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D. Logical Interpretability and Associated Code

A method of interpreting data in which the original data
passes through an encoder and becomes a depth feature. The
decoder is restored according to the depth feature. The smaller
the loss value of the whole network is, the more important the
value of the feature layer is.

For the multitask frame interpretation, the M-train stage
identifies the density distribution of tasks and finds out a
similar part of the probability distribution. The S-fit phase is
specific to the base task, which differentiates it from other
tasks at the micro level.

The explanation of boundary adaptation lies in the rein-
forcement of training boundary samples, which can get better
knowledge. We also put restrictions on the transformation of
the boundary adapters to prevent data clutter. The logic of the
method as a whole can be explained as we get unsupervised
data clustering by extracting representative important features
and strengthening the whole process.

Logically, MTDC-BA follows a sequential structure, with
M-train as the first stage and S-fit as the second. In the first
stage of the M-train, we can decide whether the pretraining
should be finished or not by the given loss derivative. In the
second stage of S-fit, we rely on judgment to see if the
sample classification continues to change to determine whether
it should end. Formally, the stopping criteria are

1 −
1
n

∑(
s t

i − s t−1
i

)
< δ (19)

where s t
i represents the clustering assignment in the t th

iteration. In the experiments, we set δ = 0.0001. The whole
MTDC-BA is summarized in Algorithm 1.

Algorithm 1 MTDC-BA
Input: Multitask dataset X = {X1, X2, . . . Xm

}, number of
clusters k, stop parameter δ, maximum iteration T , data
mapping γ(∗)

Output: Cluster assignments C
Initialize the dataset according to Eqn. (1)
Augment the original samples with Eqn. (16)
Initializes the cluster center C according to Eqn. (6)
Update the u and w as Eqn. (17)
for 0 ≤ t ≤ T do

Update the cluster center C according to Eqn. (8)
Update the edge samples V according to Eqn. (19)
if 1 −

1
n

∑
(ct

i − ct−1
i ) < 0.0001 then

Break
end if

end for

IV. EXPERIMENTS

We conducted numerous experiments to verify the effec-
tiveness of the proposed MTDC-BA. After completing the
basic experiment settings, we compared them with the latest
clustering methods. In order to explore the relevance of
multitask data, the interpretability study was carried out based
on the experiment results. Finally, the sensitivity of some
hyper-parameters is analyzed.

A. Datasets

To verify the performance of the proposed method, we con-
structed four multitask image datasets and one nonimage
dataset to conduct the experiments. These datasets are derived
from NUS-wide [37], Caltech-256 [38], Cifar-10 [39], Cifar-
100 [40], and MHRC [41]. Details of the datasets are shown in
Table I, which includes the dataset names, the task of datasets,
the category names, and the sample quantity of every class in
every task. The number of samples is marked in parentheses.

B. Baseline Methods

To verify the performance of our proposed MTDC-BA,
we performed horizontal and vertical comparisons. Horizontal
compared with the latest multitask DC methods to determine
that our method has a better performance, vertical compared
with single-task DC methods to determine that the multitask
learning method does improve. We compare the proposed
MTDC-BA method with the following three baseline methods.

1) Typical single-task clustering: KM [42] and affinity
propagation (AP) [43].

2) DC methods: DC [44], deep embedded clustering (DEC)
[45], and deep adaptive clustering (DAC) [46].

3) Multitask clustering methods: LSSMTC [8], multitask
Bregman clustering (MBC) [47], multitask multiview
clustering (MTMVC) [48], multitask image clustering
through correlation propagation (MICCP) [49], and
deep correlation mining for multitask image clustering
(DMTC) [49].

C. Experiment Setup

The network architecture used in this article is an AE of a
CNN. The encoder adopts the DenseNet121 structure, and the
output is the deep feature layer [50] with full connection and
ReLU activation. The batch size is fixed to 256. In the M-train
phase, we set the dimension of deep features to 50 and used the
SGD optimizer with a learning rate of 1.0 and momentum of
0.9 to train the autoencoder with a maximum of 500 iterations.
During the S-fit, we set the maximum number of iterations to
100 and set up the Adam Optimizer with an initial learning
rate of 0.0001. The stopping criterion is designed δ less than
0.001. In the boundary adaptation, the transformation function
is a random rotation of up to 20 pixels in each direction and
a random shift of up to 0.2 pixels. Table II shows a summary
of all the hyperparameter settings.

We ran each method 20 times and evaluated all clustering
methods by clustering accuracy (ACC) and normalized mutual
information (NMI). The ACC is defined as the best match
between ground truth y and predicted label c

ACC(y, c) = arg max
∑n

i=1 1{yi − g(ci )}

n
(20)

where yi and ci is the ground truth and predicted label of
sample xi and g(∗) is the mapping from predicted label to
ground truth label. Through the Hungarian algorithm [51],
we can get the best mapping. The NMI is defined as

NMI(y, c) =
2I (y, c)

H(y) + H(c)
(21)
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TABLE I
SUMMARY ON THE DETAILS OF DATASETS

TABLE II
SUMMARY OF KEY HYPER-PARAMETER

TABLE III
CLUSTERING PERFORMANCES OF DIFFERENT ALGORITHMS

IN TERMS OF ACC AND NMI ON CALTECH-256

where I (∗) and H(∗) are mutual information and entropy,
respectively. The scope of ACC and NMI is between 0 and 1.
The value of NMI closer to 1 indicates that the model performs
better.

D. Experiment Results

Tables III–VII present the quantitative results of ACC and
NMI for the testing datasets described in Section IV-A.

1) Compared With Traditional Clustering Methods: In
this section, the proposed MTDC-BA is compared with the
classical clustering algorithms KM and AP. In preparation,
we compare the performance of MTDC-BA on five datasets
with the best results obtained using these classic algorithms

TABLE IV
CLUSTERING PERFORMANCES OF DIFFERENT ALGORITHMS

IN TERMS OF ACC AND NMI ON CIFAR-10

TABLE V
CLUSTERING PERFORMANCES OF DIFFERENT ALGORITHMS

IN TERMS OF ACC AND NMI ON CIFAR-100

on different tasks. For example, the experiment results on
the NUS-wide show that the ACC and NMI of MTDC-BA
are higher than classical algorithms, as shown in Table VI.
There are two main reasons for such a gap: 1) traditional
algorithms do not rely on the deep features of high-level
abstract semantics, and are prone to fall into the trap of local
optimization; and 2) the traditional algorithm does not make
full use of the external/shared information of other clustering
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TABLE VI
CLUSTERING PERFORMANCES OF DIFFERENT ALGORITHMS

IN TERMS OF ACC AND NMI ON NUS-WIDE

TABLE VII
CLUSTERING PERFORMANCES OF DIFFERENT ALGORITHMS

IN TERMS OF ACC AND NMI ON MHRC

tasks, and the ability of feature extraction is not as strong as
MTDC-BA.

2) Compared With DC Methods: Since the proposed
MTDC-BA is an extension/upgrade of a deep cluster
algorithm, it is necessary to compare it with other deep
cluster methods to determine the advanced nature of MTDC-
BA. We compare MTDC-BA with the popular DC methods.
In short, the datasets for single tasks are divided, and running
relevant code or referencing data from published papers to get
the best ACC and NMI comparison. From the corresponding
results, we can see whether the performance of MTDC-BA
has been improved.

As shown in Tables III–VII, the latest and mainstream DC
algorithms are selected, but their results are not as good as
MTDC-BA. The network of MTDC-BA uses the DenseNet
format, which can better extract the deep features of the data.
What’s more, MTDC-BA considers the influence of boundary
factors and learns boundary samples better through boundary
adapters. In addition, MTDC-BA has introduced multitasking
to improve performance, and we will conduct further experi-
ments in Section IV-G to confirm that this improvement does
exist.

3) Compared With Multitask DC Methods: Since the pro-
posed method introduces multitask learning for performance
boosting, typical methods for multitask clustering are com-
pared. As can be seen from Tables III to VII, the MTDC-BA is
better than the existing multitask DC algorithms. Specifically,
the performance of LSSMTC and MTMVC is low because the

two methods assume that tasks are completely related, and
there will be negative migration on the real dataset due to
incomplete correlation, which will affect the performance of
the algorithm. The result of MBC is not ideal, because it only
uses distance to measure task correlation, and less knowledge
is gained, so the promotion of single-task performance is low.
The final performance of DMTC was also inferior to the
MTDC-BA because DMTC used AlexNet, an earlier network
framework. Compared with MTDC-BA, the ability of DMTC
to extract representative features is slightly insufficient.

E. Visualization Results

To verify the performance of MTDC-BA in efficiently
extracting deep features from image data, we conduct the
experiment for visualizing the clustering results. The exper-
iment used t-distributed stochastic neighbor embedding (t-
SNE) to visualize the extracted deep features in 2-D space
and labeled the final clustering results [52]. The experiment
results are shown in Fig. 4. Easily observed, MTDC-BA works
best on NUS-wide, which means that the result has the clearest
clustering allocation. On the contrary, there is some overlap
in the image mapping of each cluster class, which is similar
to the actual ACC and NMI in Section IV-D.

Comparing the results of four datasets, the final results are
related to the dataset containing the cluster class. In detail,
the more categories a dataset contains that are related to each
other, the denser the clustering in the visualization results.
In extension, the MTDC-BA can construct the mapping of
original samples in a new space through multitask knowledge.
There is a higher density of clusters in the new data space, with
more obvious characteristics. This also proves that MTDC-BA
can make efficient use of multitasking knowledge, greatly
improving the performance of the current single task. The
interpretability of the method can be clearly concluded from
this section. The data layer of the whole model can be divided
into three layers, which are the original data layer, feature
layer, and restore layer.

F. Convergence Study

The convergence curve of DMTC-BA-based four image
datasets is shown in Fig. 5. Noting that although the con-
vergence performance of the nonimage data MHRC is not
included, in fact, the MTDC-BA can complete the convergence
on the MHRC after the start of 20 iterations. It can be observed
that the proposed MTDC-BA has good convergence in four
different datasets. As can be seen, after 200 iterations, the
overall model tends to be stable. MTDC-BA converges rapidly
after 30 iterations for both Cifar-10 and Cifar-100 datasets. For
NUS-wide, the MTDC-BA converges after 20 iterations.

Specifically, we found reasons for faster convergence on
the last three datasets. The original feature dimensions of the
latter three datasets are relatively small, and the DenseNet
structure in MTDC-BA can efficiently mine features in images,
especially moderate images like the latter three datasets.
The Caltech-256 samples have more than 200 000 original
dimensions, so the MTDC-BA needs more iterations to find
the correct solution.
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Fig. 4. Visualization of input and deep features on four image datasets. Note that the classes in the legend correspond to the classes in the dataset introduction.
(a) Input feature of Caltech-256. (b) Input feature of Cifar-10. (c) Input feature of Cifar-100. (d) Input feature of NUW-wide. (e) Deep feature of Caltech-256.
(f) Deep feature of Cifar-10. (g) Deep feature of Cifar-100. (h) Deep feature of NUW-wide.

Fig. 5. Convergence curves of the proposed MTDC-BA on four image
datasets. Obviously, the model converges in significantly different manners,
which is related to the properties of the datasets.

G. Discovery of Multitask Learning

Compare the performance of the model in single-task and
multitask situations to determine whether multitask knowledge
is beneficial to improving single-task clustering to avoid the
differences caused by the number of datasets. The random
sampling is used to equalize the sample size and the multitask
data and the single-task data have the same data size. The
control variable method was used in the whole experiment,
and the experiment parameters were kept the same.

The performance comparison of the model with and without
multitask learning is shown in Fig. 6, from which we can
see that the performance has been consistently improved with
regard to ACC. Because multitask learning is assisted by
multitask knowledge, MTDC-BA understands which part of
the knowledge characteristics are more important. For these
important features, MTDC-BA will be preferred.

In the absence of the guidance of multitask learning, the
model will treat all features equally. Without any discrimi-
nation leads a balance for parameter resources of the whole
model. It also means the model parameter resources assigned

to important features will reduce the performance of ACC.
From the point of view of the NMI index, the difference in
NMI of each task before and after adding multitask learning
is not big, which is because NMI represents the similarity
within the cluster, and the main influencing factor is the overall
framework of the algorithm. The hyperparameters remain
unchanged in the experiment, which also leads to a small gap
in NMI.

Failure cases also appeared in the experiment. We can find
the NMI performed better before adopting multitask learning.
This also means our multitasking learning is not omnipo-
tent. Observing all the tasks that produce the failure cases,
these NMI are not ideal and lower than 0.4 before applying
multitask learning. Presumably, if there is less correlation
between the samples in one dataset, the multitask learning
is a failure. Multitask learning makes use of the relevance
or similarity among the samples and draws lessons from the
classification knowledge among the tasks. When the relevance
is low, multitasking learning can not recognize the rule of data
classification, resulting in negative learning.

In conclusion, our experiment established that multitasking
learning can enhance the evaluation of indicators in certain sit-
uations. Certain situations refer to the exact existence of
exploitable correlations in the dataset. The MTDC-BA borrows
multitask learning to promote model performance.

H. Sensitivity of Hyper-Parameters

Fig. 7 shows how the ACC and NMI change over the five
datasets as the hyper-parameters change. With the increase of
the maximum number of iterations, ACC and NMI increase
continuously before convergence. After the number of iter-
ations reaches 100, the curves about the five datasets tend
to be stable. Continuing to increase the number of iterations
may result in a negative fit, after taking into account the
performance of the five datasets and setting the maximum
number of iterations as 100.
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Fig. 6. Performance comparison with combined multitask learning-based datasets. (a) Based on Caltech-256. (b) Based on Cifar-10. (c) Based on Cifar-100.
(d) Based on NUW-wide. (e) Based on MHRC.

Fig. 7. Sensitivity analysis of a maximum number of iterations, optimizer Adam learning rate parameter, and data argumentation function γ. (a) Trend of
ACC with iterations increases. (b) Trend of NMI with iterations increases. (c) Trend of ACC with learning rate. (d) Trend of NMI with learning rate. (e) ACC
trend with different data mapping. (f) NMI trend with different data mapping.

The parameters of the Adam Optimizer LR are also part of
the experiment. The ACC and NMI tend to be stable when
LR after 0.0001. The learning rate has a larger effect on ACC
and a smaller effect on NMI. The learning rate can affect
the accuracy of model learning. The model easier to discover

features and details with a low learning rate, but costs longer
study time and more space. The NMI analysis shows that the
model framework has a strong influence on learning rate.

Data enhancement techniques require the use of translation
and cropping-related parameters. The final result shows that
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Fig. 8. Time and space consumption analysis on five datasets-based different task numbers. Note that the results are divided into two phases, taking the
maximum consumption in each phase. The results have no units, and only represent the size, based on the minimum task and the smallest single data
consumption of time and space consumption comparison. (a) Time consumption of all datasets-based two tasks. (b) Space consumption of all datasets-based
two tasks. (c) Time consumption of all datasets-based one task. (d) Space consumption of all datasets-based one task.

the best performance of the model is obtained when the
translation is 20 pixels and the rotation is 20 pixels. This
is because the data obtained by small offset and rotation are
not different from the original data and can not achieve the
goal of enhancing learning. The larger rotation and migration
make the expanded data not have the original features, and
the algorithm model can not accurately learn from the data
with large differences in features. Furthermore, the reasonable
translation and rotation range of the image dataset is larger,
nonimage data (ordinary text data) translation and rotation
range is smaller. This is because the image itself has a higher
dimension and a wider data enhancement scope. Text data
features are few and easily influenced by external features,
so the enhancement range is small.

I. Time and Space Consumption Analysis

In order to verify the stable rows of MTDC-BA, a time and
space consumption analysis is performed in Fig. 8. In terms of
time consumption, the performance of MTDC-BA is related to
dataset size and feature dimensions. The first phase of the five
datasets consumed more than the second, independent of the
number of multitasking tasks. In terms of space consumption,
the performance of MTDC-BA is related to the number of
tasks and the space consumption in the first stage increases
with the number of tasks.

The consumption situation based on the MHRC dataset
is representative. From the time trumpet, M-train multitask
knowledge mining runs in parallel with multiple threads.
MTDC-BA gets the result very quickly but costs nearly

ten times more memory space because the number of tasks
increases. The number of multitasks affects the consumption of
space and more time. The overall performance of MTDC-BA
is stable, and consistent for time control, but it requires
sufficient memory space support.

V. CONCLUSION

In this study, an MTDC-BA model is proposed, which
can perform multitask association learning when datasets
are related. MTDC-BA conducts two-phase learning: 1) the
M-train works for capturing and storing the knowledge
between the multitask datasets and 2) the S-fit is responsible
for utilizing the stored multitask knowledge and performing
the single-task clustering. Both phases eliminate boundary
effects by boundary adaptors composed of data enhancement
and self-learning. The results on five typical datasets show
that the proposed MTDC-BA method is superior to the exist-
ing methods. The experiment on multitask learning proves
MTDC-BA can effectively mine multitask knowledge, which
aims to produce a more intuitive data space.

In the future, it is expected to integrate better mechanisms
into the MTDC-BA framework, such as adversarial autoen-
coder. In terms of learning style, unsupervised learning for big
data can incorporate more anthropomorphic approaches, such
as active learning. The boundary adaptation can be extended to
be an active learning machine that submits learning content for
raw data. However, there are many challenges, active learning
requires a lot of manual labor, which will lead to cost surges,
out of control.
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